Yu (Yvonne) Wu

Email: yw573@cam.ac.uk Webpage: https://yvonneywu.github.io/

RESEARCH INTERESTS

My research interests focus on building better artificial intelligence to understand, model, and intervene multi-modal data, especially time-series data (e.g., wearables or biosignals) to improve health and well-being. I am actively working and publishing on the following topics:

- Representation learning: Learning without explicit human annotation through self-supervision tasks.
- Generalizable Machine learning: Exploring domain adaptation and generalization to tackle distribution shift challenges.

EDUCATION

University of Cambridge Ph.D. in Computer Science, Supervisor: Prof. Cecilia Mascolo Funded by Nokia Bell Labs	Cambridge, UK 2021–Present
Rice University M.S. in Electrical & Computer Engineering, Supervisor: Prof. Akane Sano	Houston, USA 2019–2021
Nanjing University of Posts and Telecommunications B.S. in Electrical & Computer Engineering	Nanjing, China 2015–2019

Relevant Experience

Mobile Systems Research Lab, University of Cambridge

Cambridge, UK 10/2021-Present

- Design self-supervised learning algorithm for robust time-series learning representations in time-series data.
- Unsupervised domain adaptation for wearable and health data.
- Exploring sequential models for cardio-respiratory fitness prediction through wearables

Computational Wellbeing Group, Rice University

Houston, USA

Research Assistant

09/2019-12/2020

- Semi-Supervised mental health prediction based on human behavioral data using GNN
- Estimating Physiological Signal and Behavioral Features through Photoplethysmography from Remote Sensing

PUBLICATIONS

- [1] Wu, Y., Spathis, D., Jia, H., Perez-Pozuelo, I., Gonzales, T. I., Brage, S., Wareham, N., Mascolo, C., "Udama: Unsupervised domain adaptation through multi-discriminator adversarial training with noisy labels improves cardio-fitness prediction", *Machine learning for Healthcare (MLHC)*, 2023.
- [2] Spathis, D., Perez-Pozuelo, I., Gonzales, T. I., **Wu, Y.**, Brage, S., Wareham, N., Mascolo, C., "Longitudinal cardio-respiratory fitness prediction through wearables in free-living environments", *npj Digital Medicine*, vol. 5, no. 1, p. 176, Dec. 2022, ISSN: 2398-6352.
- [3] Wu, Y., Spathis, D., Jia, H., Perez-Pozuelo, I., Gonzales, T. I., Brage, S., Wareham, N., Mascolo, C., "Turning silver into gold: Domain adaptation with noisy labels for wearable cardio-respiratory fitness prediction", *Machine learning for Health (ML4H)*, 2022.

Honors and Awards

• Travel Award (by DeepMind) MLHC'23	2023
Teaching and Supervisions	
• Undergraduate Project Supervisor at University of Cambridge Earable for Chewing Counting: a Feasibility Study	Fall 2023
• Teaching Assistant at Rice University Machine learning for data science (DSCI 303)	Fall 2020